
l'R-74-348 

>- 

Technical Note 1974-59 

A Generalized Approach 
to Linear Methods 

of Feature Extraction 

C. W. Thcrricn 

30 December 1974 

Prepared for the Ballistic Missile Defense Program Office, 
Department of the Army, 

under Electronic Systems Division Contract F19628-73-C-0002 by 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LEXINGTON, MASSACHUSETTS 

Approved for public release; distribution unlimited. 

AID 001?- 



The work reported in this document was performed at Lincoln Laboratory, 
a center for research operated by Massachusetts Institute of Technology. 
This program is sponsored by the Ballistic Missile Defense Program Office, 
Department of the Army; it is supported by the Ballistic Missile Defense 
Advanced Technology Center under Air Force Contract F19628-73-C-0002. 

This report may be reproduced to satisfy needs of U.S. Government agencies. 

This technical report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

j?      ^ £j^ 
Eugene C. Raabe, Lt. Col., USAF 
Chief, ESD Lincoln Laboratory Project Office 



MASSACHUSETTS INSTITUTE  OF  TECHNOLOGY 

LINCOLN  LABORATORY 

A GENERALIZED APPROACH TO LINEAR METHODS 

OF FEATURE EXTRACTION 

C. W.  THERRIEN 

Group 92 

TECHNICAL NOTE 1974-59 

30 DECEMBER  1974 

Approved for public release; distribution unlimited. 

LEXINGTON MASSACHUSETTS 





ABSTRACT 

An approach to feature extraction based on functions of the class correlation 

matrices is described.   If linear functions of the correlation matrices are chosen, 

the present method extends the methods of feature extraction proposed by Fukunaga 

and Koontz.   If certain types of non-linear functions are employed, the method re- 

duces to the orthogonal subspace method of Watanabe and Pakvasa. 

Optimization of selected features through selection of appropriate functions is 

discussed briefly.    Preliminary results of classification of radar signatures using 

the feature extraction methods described here are presented. 
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I. INTRODUCTION 

The goal of feature extraction in pattern recognition is to reduce the dimension- 

ality of the space in which classes of data are represented without greatly reducing 

the separability of the classes.   An approach to linear methods of feature extraction 

is described which is based on applying certain functions to the correlation matrices 

of the classes to be separated.   This approach to feature extraction was motivated by 
f H experience with two other methods-that of FukunagaandKoontz1     and that of Watanabe 

[2] 
and Pakvasa.      The present report shows a relation between these two methods, and 

provides a natural extension of the Fukunaga-Koontz method to the multiclass case. 

In addition, the present formulation provides enough flexibility to in principle optimize 

class separability in a very general way.   This point is discussed in the report. 

II. FORMULATION OF LINEAR FEATURE EXTRACTION 

Consider the problem of generating features to classify patterns into one of K 

distinct classes.    The patterns are originally represented by vectors_x in an n-dimen- 

sional linear vector space (the "observation space").    The correlation matrix for each 

class is defined by 

R
k
= E

k[2RLT] = ^2KTPkW*E k = l, 2.....K (4) 

where E   denotes expectation carried out using the probability density p   of class k. 

It is assumed that the correlation matrices satisfy the condition 

II R.  II a A *1; k = l, 2,...,  K (2) k max 

where A is the largest eigenvalue of R .   (This results in no loss of generality 
max K 

since (2) can always be achieved by a linear scaling of the observation space.)   Thus, 

since the correlation matrix is positive definite, all of the eigenvalues of R   lie be- 

tween 0 and 1. 



In order to motivate the general approach, let 1 u ., j = 1, 2,  . . . , n [be an or- 

thonormal basis for the observation space.    Further, let x be any random vector and 

let x be a truncated expansion of x using m < n of the u .. 

m 

X = V b.U ;    b. =u.Tx (3) 
j = 1 J    J J     "J    " 

A suitable set of features for the i    class would result if one could choose the 

u . such that the mean-square error 

E
t[ I *   ■   2   I       |  = ^  I -   "  ^ I     Pi(-)d- (4) 

is minimum and simultaneously   the mean-square error 

E
k [   I x - x I 2 ] =   ^|x-x|2pk(x)dx k = 1, 2,  . .. ,  K  (5) 

k ^ i 

is maximum.    Minimizing (4) without conditions (5) leads to the well-known Karhunen- 
r i l 

LoWe expansion --an optimum representation of a vector of class i with m terms. 

The additional conditions (5) however, if satisfied, would insure that the basis chosen 

to optimally represent a vector as a member of class i would simultaneously be non- 

optimal for representing it as a member of the other classes. 

Since it is usually not possible to minimize (4) and maximize (5) simultaneously, 

a related criterion will be derived.    This leads to a generalization of the Karhunen- 

Loeve expansion that applies to problems where class separability must be preserved. 

Note first that the mean-square error in representation can be expressed as* 

n 

Ek[|x-x |2   |   = ^u7. Rku. k = l,  2,  ...,  K     (6) 

j = m+1 

Although this result is well known, a proof is given in the Appendix for conven- 
ience. 



Then by virtue of (2) and the positive definite property of R , (6) is bounded by 

n-m^E[|x-x|2       >0 k = 1, 2,  . . . , K     (7) 

As a result, maximizing (5) for k ^ i is equivalent to minimizing 

n n 

(n - m) - E, r | x - x | 2   I   = V (u T u . - u T R    u .)   = Yu T (I - R ) u .   (8) 
kL1-    -'    J      L   -j   -j    -j      k-j        /-j k -j 

j=m+l j=m+l 

A single combined criterion is taken therefore as the sum of the criteria (4) and (8) 

normalized by K, the number of classes, that is 

ci = TMi^'2]+^-m-E
k[i^>2]>} (9) 

k = l 
k^i 

where C. is to be minimized.   If (6) and (8) are substituted into (9) then C. can be ex- 

pressed as 

where 

V     T A 

C.   =   )   u.    G, u. 
l      Z-j -l      l -i 

j=m+l 

K 

k = i 
k/i 

(10) 

(11) 

The vectors u . that minimize (10) are the eigenvectors of G. corresponding to the 

n - m smallest eigenvalues. *   Since (10) is to be minimized for any m < n, the opti- 

mal basis { u. [is the set of eigenvectors of G., and the eigenvectors chosen to express 
A L "J J l A 

x should be those corresponding to the m largest eigenvalues of G^. 

* Op. cit., p. 2. 



Note that if e is a normalized eigenvector of G., then the corresponding eigen- 

value |JL can be expressed as 
K 

1    r    T V1 T l 
M- = £   G

t £ = Y L -   Ri - + 1(1 " -   Rk - ) _, 
k = l 
Mi 

(12) 

Equation ( 2 ) and the positive definite property imply that each of the quadratic pro- 

ducts in (12) has a value between 0 and 1.    Thus |JL lies between 0 and 1 and is close to 
T T 

1 only if e    R.e is close to 1 and all of the e   Re (k ^ i) are simultaneously close to 
l A k 

0.    Thus the eigenvectors of G. corresponding to eigenvalues near 1 relate to impor- 

tant distinguishing features of class i. 

This approach can be generalized as follows.    If A is a real symmetric matrix, 

then the matrix function f (A) for any scalar function f can be defined as 

!-*(*!> 

f(A)   =  V f(x2) 

f(xn) 

V 
T 

(13) 

where X . are the eigenvalues of A, and V is the orthonormal transformation that diag- 

onalizes A. * Since the columns of V are the eigenvectors of A, the function f serves 

to "weight" the eigenvalues of A without changing its eigenvectors. 

The foregoing concept can be applied to feature extraction.    Define the matrices 

Gt and H{ for i = 1, 2,  . . . , K by 

* For purposes of this report (13) is taken to be the definition of a function of a 
symmetric matrix.    This definition does not make any assumptions of analyticity on 
the function f which are required for the extension of the matrix function concept to 
more general matrices. 



K 

Ol-itW + Xa-W] (14a) 
k = 1 

H.   = h(G{) (14b) 

where the functions -If    J- and h are any functions mapping the interval [ 0, 1 ]  into 

[0, 1 ].   We refer to the functions jf    \ and h as the "preweighting" functions and the 

"postweighting" function, respectively. Features are defined in terms of the post- 

weighted matrices H. by one of two methods: 

Method 1 - Features are chosen as the projection of the data 

along selected eigenvectors of the matrices G^.    The post- 

weighting function h can serve to select the appropriate eigen- 

vectors, that is h (x) is 1 for a selected eigendirection and 0 

for an eigendirection that is not selected. * 

Method 2 - Features are defined by the relation 

z,   =  x  H. x l       -     i- 

Each of the features z[t i = 1, 2 K can be thought of as a weighted 

projection of the observation vector x into a subspace of the observation 

space. 

III.      THE TWO-CLASS CASE 

For the special case of K = 2 the matrices G1 and G2 defined by (14a) satisfy the 

relation 

G2   =  I -G1 (15) 

* Since there is no guarantee   that the selected eigenvectors from different G. 
will be independent,  it may be necessary to eliminate those eigenvectors that can be 
represented as linear combinations of the others. 



Therefore G^ and G   have identical eigenvectors and their eigenvalues are related by 

Xj(2)   =  ' "Xj(1) j=l, 2,  ..., n    (16) 

(k) 
Since the X.      ail lie in the interval [0, 1 ], (16) shows that the eigenvectors of G 

that provide the  "most important"   features for class 1 provide the "least important" 

features for class 2 and vice-versa.    This is the principle upon which the method of 

Fukunaga and Koontz is based (see Section IV). 

IV.      LIN EAR W EIGHTING 

A simple form of pre-weighting function is a linear function 

fk(Rk)=  akRk (0<ak< 1) k = l, 2, ..., K     (17) 

When this form of preweighting is used in the two-class case, the results can be re- 

lated to the Fukunaga-Koontz method of feature extraction. 

For K = 2 (14a) becomes 

Gl   =   ^2^x\ -a9R2+I) 
11// (18) 

G2   =  l/2(a2R2-aiR1+I) 

Fukunaga and Koontz first perform a linear transformation of the observation space 

which forces the correlation matrices R ' and R '  in the transformed space to satisfy 

alV  +a2R2T    =   l (19) 

The transformed correlation matrices automatically satisfy (2).    Under this condition 

(18) reduces to 

Gi=aiV 
(20) 

G2 " a2R
2' 

and the two methods become identical. 



When the two classes have different mean vectors m   and m9 but equal covari- 

ance matrices, and are weighted equally (a   = a   = a), (18) becomes 

Gi   =  l/2(a(m1m1
T-m2m2

T) + l) 

G2   =  V2(a(m2m2
T-m1m1

T) + l) 

(21) 

Such matrices have only two eigenvalues that are not equal to 1/2, and only the cor- 

responding two eigendirections contribute to the separation of the classes. I   J 

Linear weighting is, of course, applicable to the multiclass case.    Further, 

when the correlation matrices are transformed to satisfy the condition 

K 

IakRk   =I <22) 

k = l 

then linear weighting becomes an extension of the Fukunaga-Koontz method.    The ma- 

trices in (14a) assume the form 

Gi ={ [^IY-MK-^I] (23) 

Although (16) has no direct analogy, the eigenvectors of G. corresponding to eigen- 

values that are close to 1 are "most important" for representing class i and simultan- 

eously "least important" for representing the other classes.    Therefore these eigen- 

vectors can be expected to produce the best features if Method 1 is employed. 

V.      NONLINEAR WEIGHTING 

When the nonlinear functions shown in Fig.  1 (unit step functions) are used for 

pre-weighting the correlation matrices, the result can be interpreted in terms of the 

subspace method of feature extraction developed by Watanabe and Pakvasa. 



fk (x) = u (x - ak)      0 <. ak <. 1 
TN74-59 (l) 

l - 

Fig.  1.   Unit step function. 

The functions fi (x) = u(x - a ) map the eigenvalues of the correlation matrices 

into 0 and 1 and thereby transform the correlation matrices into so-called orthogonal 

projection operators. The projection operator P = f, (R,) corresponds to a subspace 

S (P ) of the observation space spanned by the eigenvectors of R, whose eigenvalues 

are greater than or equal to a . The projection operator P, transforms any vector x 

into another vector x, called the projection of x into S  (p ).     A geometrical interpre- 
— K — k 

tation is given in Fig.  2.    The matrices G. of (14a) are expressed in terms of the pro- 

jection operators by 

G.   = — 
K 

Lpt + I(I"p
k>] 

k = l 

Mi 

i = l, 2, ....  K (24) 



X.     =P.    X 
-k        k - 

TN7^-59 (2) 

S(Pk) 

Fig. 2.   Geometric interpretation of projection operators. 

Watanabe calls the subspaces S (P^) "representation subspaces" since they are 

spanned by the eigenvectors of each class that provide the optimal mean-square repre- 

sentation of that class.    Feature subspaces are formed by removing the intersection of 

the representation classes.   If    S (P.') is the i    feature subspace then 

S (P.') =   S (P.)fl[£   S  (Pk) 
Jv — 1 

Mi 

(25) 

where   S   (p ) denotes the complement of   S (P,). 



[3] 
It can be shown that the eigenvectors of (24) corresponding to an eigenval- 

ues of 1 span   S   (p.1).    In particular, if the postweighting function h(x) is defined by 

h(x)=l ifx = l (26) 

0 otherwise 

then the projection operators for the feature subspaces are given by 

P{    =h(Gi) i = l, 2,  ..., K (27) 

Features for the subspace technique are defined by Method 2, resulting in one feature 

for each class. * 

VI.       REMARKS ABOUT OPTIMAL WEIGHTING 

The Fukunaga-Koontz results show that equal linear weighting optimizes the 
r 1 ] 

Divergence measure of separability in the two-class case with equal covariances. 

It is probably very difficult to analytically determine weighting functions that would 

optimize any measure of class separability in more general cases.   It does seem fea- 

sible to numerically optimize almost any criterion within certain classes of parame- 

terized weighting functions.    Both the linear functions and step functions described 

here are suitable choices for this type of optimization.    Polynomial or piecewise-lin- 

ear functions could also be used. 

When using Method 1 for defining features, one would choose the postweighting 

function to select eigendirections corresponding to the largest m eigenvalues of each 

G, and optimize the parameters of the preweighting functions.    When using Method 2 

for defining features both the preweighting and the postweighting functions must be op- 

timized simultaneously and a dynamic programming approach may be appropriate. 

* When the number of classes is small, the portion of the observation space not 
common to any of the feature subspaces may also be used to generate a feature. 

10 



VII.    APPLICATION TO RADAR SIGNATURE CLASSIFICATION 

Preliminary results from the application of the weighting function methods to 

the classification of radar signatures are reported in this section.    The data to be 

classified consisted of 300 simulated radar signatures from each of two distinct ob- 

jects (a reentry vehicle and a decoy) in ballistic trajectories.    Each signature was 

represented in the observation space by a 30-dimensional vector corresponding to a 

set of sequential returns received by the radar.    The data were then mapped into a 

3-dimensional feature space using the Fukunaga-Koontz technique, the linear weight- 

ing technique, and the subspace technique. *   Features were chosen according to 

Method 1 for the Fukunaga-Koontz and linear weighting techniques and according to 

Method 2 for the subspace technique.    Fig.  3 shows results of classification in the 

observation space and in each of the three feature spaces.   A quadratic classifier 

using the "leave-one-out" method was employed to produce the operating character- 

istics.    For a three-dimensional feature space, the Fukunaga-Koontz, linear weight- 

ing, and the subspace methods show comparable performance.   When the feature 

spaces for the Fukunaga-Koontz and linear weighting methods are increased to twelve 

dimensions, performance appoaches that of the classifier in the 30-dimensional ob- 

servation space.    These examples show that it is possible to considerably reduce the 

dimensionality of data through suitable linear transformations without greatly reduc- 

ing the separability. 

Equal weighting a   = a   =1 was used for the former two techniques. 

11 
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APPENDIX 

Proof of Results Relating to the Optimal Basis 

1.        Proof of Equation (6) 

Given any orthonormal basis «J u ., j = 1, 2,  ..., n \ , a vector x in the observa- 

tion space can be represented by 

x  = £b.u. (A.l) 

J-l 

where 

b     =  xV j =1, 2,  ..., n (A. 2) 

Let x be a truncated representation of x given by (3).    Then for any class k one can 

write n n n 

j = m+1 j = m+1 j = m+1 

where the last equality derives from the orthonormal property of the basis.    If (A. 2) 

and (1) are used in (A. 3), the latter equation becomes 

n n 
A ,2i    r „ r   T      T    n    v 

Ek 
[Ix-x|   ] = jEk[,rx,]^u.   Rku. (A. 4) 

j = m+1 j = m+1 

where R,  is the correlation matrix for class k. 
k 

A 
2.        Proof of Optimal Properties of the Eigenvectors of G. 

It is desired to find the set of vectors u      A, u      _,  . . . , u   that minimizes (10) 
-m+1   -m+2 -n 

subject to the normality constraint 

T 
u .    u . = 1 j = m+1, m+2,  . . ., n        (A. 5) 

14 



Let fa.       , |JL       , ..., |JL   be Lagrange multipliers.   A necessary condition for the 

minimum is 

n n 
— S u     G.u. +    >u4(l-u.    u.)l=0       k = m+l, m+2,. .., n        (A. 6) 
ouk L L -j      i-j       /_•   y     -j   -j7 J    - 

j = m+1 j = m+1 

which reduces to the eigenvalue equation 

A 
G.u    -fi   u   =0 k = m+1, m+2,. . . ,n (A. 7) 

where u,  are eigenvectors and JJL   are the eigenvalues.   If (A. 7) is used in (10) then 

the criterion C. becomes 
l 

n 

C.   -\». ' (A.8) 

j =m+l 

A 
Therefore to minimize C, one must choose the eigenvectors of G. corresponding to 

the n - m smallest eigenvalues. 

15 
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